为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为
,两轮检测是否合格相互没有影响.
(1)求该产品不能销售的概率;
(2)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).
已知以为首项的数列
满足:
(1)若,求证:
;
(2)若,求使
对任意正整数n都成立的
与
.
给定圆:
及抛物线
:
,过圆心
作直线
,此直线与上述两曲线的四个交点,自上而下顺次记为
,如果线段
的长按此顺序构成一个等差数列,求直线
的方程.
有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速
和车长
的关系满足:
(
为正的常数),假定车身长为
,当车速为
时,车距为2.66个车身长.
写出车距关于车速
的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
如图,四边形为矩形,平面
⊥平面
,
,
为
上的一点,且
⊥平面
.
(1)求证:⊥
;
(2)求证:∥平面
.
在锐角中,角
的对边分别为
,已知
(1)求角;
(2)若,求
面积
的最大值.