设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.
(1)求实数a,b的值;
(2)求函数f(x)的极值.
已知在中,
,且
与
是方程
的两个根.
(Ⅰ)求的值;
(Ⅱ)若,求
的长.
如图,
四点在同一圆上,
的延长线与
的延长线交于
点,且
.
(I)证明:
;
(II)延长
到
,延长
到
,使得
,证明:四点共圆.
在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
已知函数
(Ⅰ)解不等式:;
(Ⅱ)当时,
恒成立,求实数
的取值范围。
如图,直线经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线是⊙
的切线;
(II)若⊙
的半径为
,求
的长.