如图,点为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.
(1) 求证:;
(2) 在任意中有余弦定理:
.
拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明
(本小题满分12分)已知为圆
上任一点,且点
.
(1)若在圆
上,求线段
的长及直线
的斜率;
(2)求的最大值和最小值;
(3)若,求
的最大值和最小值.
(本小题满分12分)设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.
(本小题满分10分)已知函数=
(2≤
≤4)
(1)令,求y关于t的函数关系式,t的范围.
(2)求该函数的值域.
(本小题满分12分)
已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点(4
,
)到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C与直线相交于不同的两点A、B,求证:
.
(本小题满分12分)如图,在长方中,
,
,当E为AB中点时,求二面角
的余弦值.