游客
题文

月球距离地球大约 3.84×105千米, 一架飞机的速度约为 8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要多少时间 ?

科目 数学   题型 解答题   难度 较易
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产A、B两种产品共50件,已知每生产一件A种产品,需要甲种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元.
(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?
(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式.
(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?

一次函数的图像与反比例函数的图象交于A(-2,1),B(1,n)两点.

(1)试确定上述反比例函数和一次函数的表达式;
(2)求△OAB的面积.
(3)写出反比例函数值大于一次函数值的自变量x的取值范围.

如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.

(1)求线段OD的长;
(2)若tan∠C=,求弦MN的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号