已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+,
求证:bn·bn+2<.
有时可用函数
述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关
(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127]
(127,133].当学习某学科知识6次时,掌握程度是85%,请
确定相应的学科.
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售
量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)
的平方成正比,已知商品单价降低2元时,一星期多卖出24件.
(I)将一个星期的商品销售利润表示成的函数;
(II)如何定价才能使一个星期的商品销售利润最大?
(本小题满分12分)
已知函数的图象为曲线
, 函数
的图象为直线
.
(Ⅰ) 当时, 求
的最大值;
(Ⅱ) 设直线与曲线
的交点的横坐标分别为
, 且
,
求证: .
(本小题满分12分)已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数
的取值范围.