已知椭圆:
的离心率
,
是椭圆
上两点,
是线段
的中点,线段
的垂直平分线与椭圆
相交于
两点.
(1)求直线的方程;
(2)是否存在这样的椭圆,使得以为直径的圆过原点
?若存在,求出该椭圆方程;若不存在,请说明理由.
从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
cm和
cm之间,将测量结果按如下方式分成八组:第一组[
,
),第二组[
,
),…,第八组[
,
],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
cm以上(含
cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
{
},事件
{
},求
.
已知为
的内角
的对边,满足
,函数
在区间
上单调递增,在区间
上单调递减.
(Ⅰ)证明:;
(Ⅱ)若,证明
为等边三角形.
设函数,其中
为常数.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)当时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式
都成立.
已知:圆过椭圆
的两焦点,与椭圆有且仅有两个公共点:直线
与圆
相切 ,与椭圆
相交于A,B两点记
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.
已知函数f(x)=(m为常数0<m<1),且数列{f(
)}是首项为2,公差为2的等差数列.
(1)=
f(
),当m=
时,求数列{
}的前n项和
;
(2)设=
·
,如果{
}中的每一项恒小于它后面的项,求m的取值范围.