某数学兴趣小组有男女生各名.以下茎叶图记录了该小组同学在一次数学测试中的成绩(单位:分).已知男生数据的中位数为
,女生数据的平均数为
.
(1)求,
的值;
(2)现从成绩高于分的同学中随机抽取两名同学,求抽取的两名同学恰好为一男一女的概率.
已知函数.
(1)当a=1时,求曲线在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的值;
(3)若对任意,且
恒成立,求a的取值范围.
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF平面AEB,AE
EB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BDEG;
(3)求二面角C—DF—E的正弦值.
已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,,
,问是否存在最小正整数n使得
成立?若存在,试确定n的值,不存在说明理由.