已知椭圆:
的左焦点
,离心率为
,函数
,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,
,过
的直线
交椭圆
于
两点,求
的最小值,并求此时的
的值.
函数(A>0,
>0)的最小值为-1,其图象相邻两个对称中心之间的距离为
.
(1)求函数的解析式
(2)设,则
,求
的值.
已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)求证:;
(Ⅲ)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
设函数对任意
,都有
,当
时,
(1)求证:是奇函数;
(2)试问:在时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
(1)求
(2).
已知函数的图象在与
轴交点处的切线方程是
.
(I)求函数的解析式;
(II)设函数,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.