如图,某学校综合楼入口处有一斜坡AB,坡角为12°,AB长为3 m.施工队准备将斜坡建成三级台阶,台阶高度均为h cm,深度均为30 cm,设台阶的起点为C.
(1)求AC的长度;(2)每级台阶的高度h.
(参考数据:sin12°≈0.20,cos12°≈0.97,tan12°≈0.21,结果保留整数)
在梯形ABCD中,AB//CD,点E在线段DA上,直线CE与BA的延长线交于点G,
(1)求证:△CDE∽△GAE;
(2)当DE:EA=1:2时,过点E作EF//CD交BC于点F且 CD=4,EF=6,求AB的长
如图,已知△ABC,以AB为直径的⊙O经过BC的中点D,DE⊥AC于E。
(1)求证: DE是⊙O的切线;
(2)若, DE="6," 求⊙O的直径。
如图,已知A(-4,m),B(2,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与轴的交点C的坐标及△AOB的面积;
(3)当取何值时,反比例函数值大于一次函数值.
如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).
(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.