扇形AOB中心角为60°,所在圆半径为,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;
(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=;
试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
已知定点,
,直线
(
为常数).
(1)若点、
到直线
的距离相等,求实数
的值;
(2)对于上任意一点
,
恒为锐角,求实数
的取值范围.
已知向量,设函数
+1
(1)若,
,求
的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足
,求
的取值范围.
设集合为函数
的定义域,集合
为函数
的值域,集合
为不等式
的解集.
(1)求;
(2)若,求
的取值范围.
如图,已知四边形ABCD内接于,且AB是的
直径,过点D的
的切线与BA的延长线交于点M.
(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.
已知函数
(1)若函数在点
处的切线与圆
相切,求
的值;
(2)当时,函数
的图像恒在坐标轴
轴的上方,试求出
的取值范围.