一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.
(Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率;
(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.
(1)求证:BC∥平面EFG;
(2)DH⊥平面AEG.
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos,
=3.
(1)求△ABC的面积;
(2)若c=1,求a、sinB的值.
设函数f(x)=x2(ex﹣1)+ax3
(1)当时,求f(x)的单调区间;
(2)若当x≥0时,f(x)≥0恒成立,求a的取值范围.
△ABC中,角A、B、C对边分别是a、b、c,满足2=a2﹣(b+c)2.
(Ⅰ)求角A的大小;
(Ⅱ)求2cos2
﹣sin(
﹣B)的最大值,并求取得最大值时角B、C的大小.
已知数列{an}满足的前n项和为Sn,且Sn=+n﹣1,(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式满足bn=n(1﹣an),求数列{bn}的前n项和Tn.