已知椭圆过点
,且离心率
。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为D,且满足
,试判断直线
是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。
已知是函数
的一个极值点.
(1)求的值;
(2)求在区间
上的最值.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
在直角梯形PBCD中,,A为PD的中点,如下左图。将
沿AB折到
的位置,使
,点E在SD上,且
,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.
在平面直角坐标系O
中,直线
与抛物线
=2
相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么
=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点的直线交椭圆于点
,求
面积的最大值。