已知椭圆过点
,且离心率
。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为D,且满足
,试判断直线
是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。
设 n为正整数,集合 A= .对于集合 A中的任意元素 和 ,记
M( )= .
(Ⅰ)当 n=3时,若 , ,求 M( )和 M( )的值;
(Ⅱ)当 n=4时,设 B是 A的子集,且满足:对于 B中的任意元素 ,当 相同时, M( )是奇数;当 不同时, M( )是偶数.求集合 B中元素个数的最大值;
(Ⅲ)给定不小于2的 n,设 B是 A的子集,且满足:对于 B中的任意两个不同的元素 , M( )=0.写出一个集合 B,使其元素个数最多,并说明理由.
已知抛物线C: =2px经过点 (1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点, , ,求证: 为定值.
设函数 =[ ] .
(1)若曲线在点(1,
)处的切线与
轴平行,求
;
(2)若 在 处取得极小值,求 的取值范围.
电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 |
第一类 |
第二类 |
第三类 |
第四类 |
第五类 |
第六类 |
电影部数 |
140 |
50 |
300 |
200 |
800 |
510 |
好评率 |
0.4 |
0.2 |
0.15 |
0.25 |
0.2 |
0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用" "表示第 k类电影得到人们喜欢," "表示第 k类电影没有得到人们喜欢( k=1,2,3,4,5,6).写出方差 , , , , , 的大小关系.
如图,在三棱柱 ABC−
中,
平面 ABC, D, E, F, G分别为
, AC,
, 的中点, AB=BC=
, AC=
=2.
(1)求证: AC⊥平面 BEF;
(2)求二面角 B−CD− C 1的余弦值;
(3)证明:直线 FG与平面 BCD相交.