某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
50 |
70 |
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
(可能用到的公式:,
,其中
、
是对回归直线方程
中系数
、
按最小二乘法求得的估计值)
如图,已知椭圆到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点..
(1)求此椭圆的方程及离心率;
(2)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
设函数(提示 :
)
(1)若函数在定义域上是单调函数,求实数
的取值范围;
(2) 若,证明对任意的正整数n,不等式
都成立.
如图, 在直三棱柱中,
,
,
,点
的中点,
(1)求证:
(2)求证://平面
;
(3)求几何体的体积.