游客
题文

已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:

(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;
(2)求该班共有多少名学生;
(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.

如图,线段AD=18cm,线段AC=BD=12cm,E、F分别是线段AB、CD的中点,求线段EF的长.

如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°.

(1)求∠COD的度数;
(2)求∠BOF的度数.

(1)计算:(﹣3)3÷2×(﹣2+4﹣22×(﹣).
(2)先化简,后求值:3a+(a﹣2b)﹣(3a﹣6b),其中a=2,b=﹣3.

为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成11部分…;
把上述探究的结果进行整理,列表分析:

直线条数
把平面分成部分数
写成和形式
1
2
1+1
2
4
1+1+2
3
7
1+1+2+3
4
11
1+1+2+3+4




(1)当直线条数为5时,把平面最多分成部分,写成和的形式
(2)当直线为n条时,把平面最多分成部分.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号