变换T1是逆时针旋转的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=
.
(1)求点P(2,1)在T1作用下的点P′的坐标;
(2)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.
在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球。现在前后一共掷了4次骰子,设、
分别表示甲、乙盒子中球的个数。
(Ⅰ)求的概率;
(Ⅱ)若求随机变量
的分布列和数学期望。
的三个内角A,B,C所对的边分别为a,b,c, 向量
且
(Ⅰ)求的大小;
(Ⅱ)现给出下列四个条件:①②
③
④
.试从中再选择两个条件以确定
,求出你所确定的
的面积.
近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨。现由天气预报得知,某地在未来3天的指定时间的降雨概率是:前2天均为50%,后1天为80%.3天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.求不需要人工降雨的天数x的分布列和期望.
某服装商场为了了解毛衣的月销售量(件)与月平均气温
(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
月平均气温![]() |
17 |
13 |
8 |
2 |
月销售量![]() |
24 |
33 |
40 |
55 |
(1)做出散点图;
(2) 求线性回归方程;
(3)气象部门预测下个月的平均气温约为6ºC,据此估计该商场下个月毛衣的销售量.( ,
)
在一次购物抽奖活动中,假设某6张券中有一等奖 券1张,可获价值50元的奖品;有二等奖券1张,每张可获价值20元的奖品;其余4张没有奖.某顾客从此6张中任抽1张,求:
(1)该顾客中奖的概率;
(2)该顾客参加此活动可能获得的奖品价值的期望值.