山东省第23届运动会在济宁隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
如图,在平面直角坐标系中,点 为坐标原点,菱形 的顶点 在 轴的正半轴上,顶点 的坐标为 .
(1)求图象过点 的反比例函数的解析式;
(2)求图象过点 , 的一次函数的解析式;
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量 的取值范围.
如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度 (单位: 与飞行时间 (单位: 之间具有函数关系 ,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为 时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
如图, 为 的直径,点 在 上, 于点 ,且 平分 ,求证:
(1)直线 是 的切线;
(2) .
如图1,经过原点 的抛物线 与 轴交于另一点 , ,在第一象限内与直线 交于点 .
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点 ,满足以 , , 为顶点的三角形的面积为2,求点 的坐标;
(3)如图2,若点 在这条抛物线上,且 ,在(2)的条件下,是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.