游客
题文

已知函数,其中.
(Ⅰ)当时,求函数的单调递增区间;
(Ⅱ)证明:对任意,函数的图象在点处的切线恒过定点;
(Ⅲ)是否存在实数的值,使得函数上存在最大值或最小值?若存在,求出实数 的取值范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

在锐角△ABC中,角A、B、C的对边分别为a、b、c,且
(1)求角
(2)若,求面积S的最大值.

已知
(1)若,求的值;
(2)若,且,求的值.

已知命题:“,使等式成立”是真命题.
(1)求实数m的取值集合M;
(2)设不等式的解集为N,若的必要条件,求a的取值范围.

设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号