如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD(保留作图痕迹,不写作法);
(2)若AD=4,求CD的长.
先化简再求值:,其中
.
计算:
(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.
(2)图(1)所示的图形中,有像我们常见的学习用品——圆规。我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.
(3)请你直接利用以上结论,解决以下问题:
如图(3)DC平分∠ ADB, EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.
如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)图②中的阴影部分的正方形的边长等于_________(用含m、n的代数式表示);
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①_____________________.方法②____________________;
(3)观察图②,试写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系
__________________________________________________________________
(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,求(a-b)2的值.
将幂的运算逆向思维可以得到,
,
,
,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解,收到事半功倍的效果如:
(1)=__________
(2) 若3×9m×27m=311,则m的值为____________.
(3) 比较大小:,则a、b、c、d的大小关系是____________
(提示:如果,n为正整数,那么
)