(本小题5分)我们定义:如图1,矩形MNPQ中,点K、O、G、H分别在NP、PQ、QM、MN上,若,则称四边形KOGH为矩形MNPQ的反射四边形.如图2、图3四边形ABCD、A’B’C’D’均为矩形,它们都是由32个边长为1的正方形组成的图形,点E、F、E’、F’分别在BC、CD、B’C’、C’D’边上,试利用正方形网格在图2、图3中分别画出矩形ABCD和矩形A’B’C’D’的反射四边形EFGH和E’F’G’H’.
已知抛物线用配方法求出它的顶点坐标、对称轴.
.抛物线与
轴交于A,B两点,与
轴交于C点,且A(
,0)。
(1)求抛物线的解析式及顶点坐标D的坐标;
(2)判断
的形状,证明你的结论;
(3)点M(m,0)是
轴上的一个动点,当MC+MD的值最小时,求m的值。
.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图,已知梯形ABCD中,AB//CD,AB="2,CD=5," ∠ABC=90°,E是BC上一点,若把△CDE沿折痕折过去,C点恰好与A重合
求:(1)BC的长
(2)tan∠CDE的值
抛物线y =" –" x+ (m – 1 )x + m与y轴交于( 0,3 )点
.(1) 求出m的值并画出这条抛物线;
(2) 求它与 x 轴的交点和抛物线顶点的坐标; .
(3) x取什么值时,抛物线在x轴上方?
(4) x取什么值时,y的值随 x值的增大而减小?