已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.
(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;
(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望
如图,四棱锥的底面
是直角梯形,
,
,且
,顶点
在底面
内的射影恰好落在
的中点
上.
(1)求证:;
(2)若,求直线
与
所成角的 余弦值;
(3)若平面与平面
所成的二面角为
,求
的值.
已知圆.
(1)若直线过点
,且与圆
相切,求直线
的方程;
(2)若圆的半径为4,圆心
在直线
:
上,且与圆
内切,求圆
的方程.
已知抛物线的焦点为双曲线
的一个焦点,且两条曲线都经过点
.
(1)求这两条曲线的标准方程;
(2)已知点在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点
的坐标.
如图,斜四棱柱的底面
是矩形,平面
⊥平面
,
分别为
的中点.
求证:
(1);(2)
∥平面
.
已知为实数,
:点
在圆
的内部;
:
都有
.
(1)若为真命题,求
的取值范围;
(2)若为假命题,求
的取值范围;
(3)若“且
”为假命题,且“
或
”为真命题,求
的取值范围.