已知函数在
与
时都取得极值.
(1)求的值及
的极大值与极小值;
(2)若方程有三个互异的实根,求
的取值范围;
(3)若对,不等式
恒成立,求
的取值范围.
如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。
(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
如图,是边长为2的正三角形,若
平面
,平面
平面
,
,且
(Ⅰ)求证://平面
;
(Ⅱ)求证:平面平面
。
已知动圆经过点
和
(Ⅰ)当圆面积最小时,求圆
的方程;
(Ⅱ)若圆的圆心在直线
上,求圆
的方程。
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF
已知的三个顶点
(4,0),
(8,10),
(0,6).
(Ⅰ)求过A点且平行于的直线方程;
(Ⅱ)求过点且与点
距离相等的直线方程。