如图,是边长为2的正三角形,若
平面
,平面
平面
,
,且
(Ⅰ)求证://平面
;
(Ⅱ)求证:平面平面
。
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证
.
给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
已知函数, 数列
满足
.
(1)求数列的通项公式;
(2)令,若
对一切
成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G.
(l)求证:EG∥;
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体
的体积.
下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.
(l)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。