游客
题文

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动

(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0.AC边上的高BH所在直线为x-2y-5=0.
求:(1)顶点C的坐标;
(2)直线BC的方程.

如图,直角三角形ABC的顶点A的坐标为(-2,0),直角顶点B的坐标为(0,-2),顶点C在x轴上.
(1)求BC边所在直线的方程.
(2)圆M是△ABC的外接圆,求圆M的方程.

△ABC的两条高所在直线的方程为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.

如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.
(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN;
(2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;
(3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.

已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号