设函数.
(1)解不等式;
(2)若不等式在
上恒成立,求实数
的取值范围.
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60
,EC
面ABCD,FA
面ABCD,G为BF的中点,若EG//面ABCD.
(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.
(本小题满分l0分) 在等比数列中,已知
.
求数列
的通项公式;
设数列
的前n项和为
,求
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.
(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin
的最大值,