(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
y |
… |
16 |
10 |
8.34 |
8.1 |
8.01 |
8 |
8.01 |
8.04 |
8.08 |
8.6 |
10 |
11.6 |
15.14 |
… |
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数
在区间上递增.当
时,
.
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(本小题满分12分)如图,在平面直角坐标系中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
.
(1)求的值; (2)求
的值.
(本小题满分10分)已知,
(1)求的夹角
;(2)求
的值.
(本小题满分12分)已知数列.
(1)求数列的通项公式;
(2)设,探求使
恒成立的
的最大整数值.
(本小题满分12分)
港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问检查站C离港口A有多远?