已知椭圆的方程为
,双曲线
的左、右焦点分别是
的左、右顶点,而
的
左、右顶点分别是的左、右焦点.
(1)求双曲线的方程;
(2)若直线与双曲线
恒有两个不同的交点A和B,且
(其中
为原点),求实数
的范围.
设函数,若
在点
处的切线斜率为
.
(Ⅰ)用表示
;
(Ⅱ)设,若
对定义域内的
恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:
.
已知椭圆:
的左焦点为
,右焦点为
.
(Ⅰ)设直线过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
已知轴对称平面五边形(如图1),
为对称轴,
,
,
,将此图形沿
折叠成直二面角,连接
、
得到几何体(如图2).
(Ⅰ)证明:∥平面
;
(Ⅱ)求二面角的余弦值.
中,角
所对的边分别为
且
.
(Ⅰ)求角的大小;
(Ⅱ)若向量,向量
,
,
,求
的值.
已知函数(
).
(Ⅰ)若的定义域和值域均是
,求实数
的值;
(Ⅱ)若在区间
上是减函数,且对任意的
,
,总有
,求实数
的取值范围.