游客
题文

已知:如图,在中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,直角 ΔABC 中, A 为直角, AB = 6 AC = 8 .点 P Q R 分别在 AB BC CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 P 由点 A 出发以每秒3个单位的速度向点 B 运动,点 Q 由点 B 出发以每秒5个单位的速度向点 C 运动,点 R 由点 C 出发以每秒4个单位的速度向点 A 运动,在运动过程中:

(1)求证: ΔAPR ΔBPQ ΔCQR 的面积相等;

(2)求 ΔPQR 面积的最小值;

(3)用 t (秒 ) ( 0 t 2 ) 表示运动时间,是否存在 t ,使 PQR = 90 ° ?若存在,请直接写出 t 的值;若不存在,请说明理由.

如图,四边形 ABCD 内接于圆 O BAD = 90 ° AC 为直径,过点 A 作圆 O 的切线交 CB 的延长线于点 E ,过 AC 的三等分点 F (靠近点 C ) CE 的平行线交 AB 于点 G ,连接 CG

(1)求证: AB = CD

(2)求证: C D 2 = BE BC

(3)当 CG = 3 BE = 9 2 时,求 CD 的长.

已知二次函数的表达式为 y = x 2 + mx + n

(1)若这个二次函数的图象与 x 轴交于点 A ( 1 , 0 ) ,点 B ( 3 , 0 ) ,求实数 m n 的值;

(2)若 ΔABC 是有一个内角为 30 ° 的直角三角形, C 为直角, sin A cos B 是方程 x 2 + mx + n = 0 的两个根,求实数 m n 的值.

如图,反比例函数 y = k x 的图象与一次函数 y = x + b 的图象交于 A B 两点,点 A 和点 B 的横坐标分别为1和 2 ,这两点的纵坐标之和为1.

(1)求反比例函数的表达式与一次函数的表达式;

(2)当点 C 的坐标为 ( 0 , 1 ) 时,求 ΔABC 的面积.

如图,以 BC 为底边的等腰 ΔABC ,点 D E G 分别在 BC AB AC 上,且 EG / / BC DE / / AC ,延长 GE 至点 F ,使得 BE = BF

(1)求证:四边形 BDEF 为平行四边形;

(2)当 C = 45 ° BD = 2 时,求 D F 两点间的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号