(1)观察图,并填写下表(图中每个小方格的面积为1单位面积):
![]() |
A的面积 (单位面积) |
B的面积 (单位面积) |
C的面积 (单位面积) |
图① |
|
|
|
图② |
|
|
|
(2)三个正方形A,B,C的面积之间有什么关系?
(3)三个正方形围成的一个直角三角形的三边长之间存在什么关系?
先化简,再求值:
(2)(x+y)2-2x(x+y),其中x=3,y=2.
计算
(1)[(x+y)2-(x-y)2]÷(2xy)
(2)
(3)
计算
(1)(2a+1)2-(2a+1)(-1+2a)
(2)
(3)
如图1,在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6.现有两动点P、Q分别从A、C两点同时出发,点P以每秒1个单位长的速度由点A向点D做匀速运动,点Q沿折线CB—BA向点A做匀速运动.
(1)点P将要运行路径AD的长度为;点Q将要运行的路径折线CB—BA的长度为.
(2)当点Q在BA边上运动时,若点Q的速度为每秒2个单位长,设运动时间为t秒.
①求△APQ的面积S关于t的函数关系式,并求自变量t的取范围;
②求当t为何值时,S有最大值,最大值是多少?
(3)如图2,若点Q的速度为每秒a个单位长(a≤),当t =4秒时:
①此时点Q是在边CB上,还是在边BA上呢?
②△APQ是等腰三角形,请求出a的值.
尔凡驾车从甲地到乙地,设他出发第xmin时的速度为ykm/h,图中的折线表示他在整个驾车过程中y与x之间的函数关系.
(1)当20≤x≤30时,汽车的平均速度为 km/h,该段时间行驶的路程为km;
(2)当30≤x≤35时,求y与x之间的函数关系式,并求出尔凡出发第32min时的速度;
(3)如果汽车每行驶100km耗油8L,那么尔凡驾车从甲地到乙地共耗油多少升?