(本小题满分12分)已知抛物线的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为
,且
.
(Ⅰ)求此抛物线的方程;
(Ⅱ)过点做直线
交抛物线
于
两点,求证:
.
(本小题满分12分)已知命题:在
上定义运算
:
不等式
对任意实数
恒成立;命题
:若不等式
对任意的
恒成立.若
为假命题,
为真命题,求实数
的取值范围.
(本小题满分12分)在中,角
的对边分别为
,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
的面积.
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
已知圆的圆心在直线
上,且与
轴交于两点
,
.
(Ⅰ)求圆的方程;
(Ⅱ)求过点的圆
的切线方程;
(Ⅲ)已知,点
在圆
上运动,求以
,
为一组邻边的平行四边形的另一个顶点
轨迹
方程.