已知曲线:
(
为参数),
:
(
为参数).
(1)化,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点
对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;
已知角α终边上一点P(-,y),且sinα=
y,求cosα和tanα的值.
α是第二象限角,P(x,)为其终边上一点,且cosα=
x,求sinα的值.
设动点P(x,y)(x≥0)到定点F的距离比到y轴的距离大
.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(1)求抛物线方程及其焦点坐标;
(2)已知O为原点,求证:∠MON为定值.