某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往地至少72吨的货物,派用的每辆车须满载且只运送一次.派用的每吨甲型卡车须配2名工人,运送一次可得利润450元;派用的每辆乙型卡车须配1名工人,运送一次可得利润350元.问该公司如何派用两类卡车的车辆数可得最大利润?
函数的定义域为(0,1](
为实数).
⑴当时,求函数
的值域;
⑵若函数在定义域上是减函数,求
的取值范围;
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
合计 |
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还
喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
袋中装有m个红球和n个白球,m≥n≥2,这些红球和白球除了颜色不同以外,其余都相同.从袋中同时取出2个球.
(1)若取出是2个红球的概率等于取出的是一红一白的2个球的概率的整数倍,试证:m 必为奇数;
(2)若取出的球是同色的概率等于不同色的概率,试求m+n≤40的所有数组(m,n).
在长度为10cm的线段AD上任取两点B、C,在B、C处折断此线段而得一折线,求此折线能构成三角形的概率.
有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?