已知函数(
为常数,
为自然对数的底)
(1)当时,求
的单调区间;
(2)若函数在
上无零点,求
的最小值;
(3)若对任意的,在
上存在两个不同的
使得
成立,求
的取值范围.
【原创】(本小题满分12分)已知函数.
(1)求函数的最小正周期和单调递减区间;
(2)设△的内角
的对边分别为
且
,
,若
,求
的值.
【原创】(本小题满分13分)已知函数.
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值.
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,恒有
f(x)>g(x)成立.
【原创】(本小题满分13分)已知数列{}中,
,且
对任意正整数都成立,数列{
}的前n项和为Sn.
(1)若,且
,求a;
(2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项
按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;
(3)若.
【原创】(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
接受挑战 |
不接受挑战 |
合计 |
|
男性 |
45 |
15 |
60 |
女性 |
25 |
15 |
40 |
合计 |
70 |
30 |
100 |
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
(本小题满分10分)已知圆过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,
是否为一定值?请证明你的结论.