如图,直角坐标系XOY中,点F在x轴正半轴上,的面积为S.且,设,.(1)以O为中心,F为焦点的椭圆E经过点G,求点G的纵坐标.(2)在(1)的条件下,当取最小值时,求椭圆E的标准方程.(3)在(2)的条件下,设点A、B分别为椭圆E的左、右顶点,点C是椭圆的下顶点,点P在椭圆E上(与点A、B均不重合),点D在直线PA上,若直线PB的方程为,且,试求CD直线方程.
已知一条曲线在轴右边,上每一点到点的距离减去它到轴距离的差都等于1. (1)求曲线C的方程; (2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.
已知函数,函数. (1)判断函数的奇偶性; (2)若当时,恒成立,求实数的最大值.
已知数列及其前项和满足:(,). (1)证明:设,是等差数列;(2)求及.
向量,,设函数,(,且为常数) (1)若为任意实数,求的最小正周期; (2)若在上的最大值与最小值之和为,求的值.
(本小题满分15分)已知函数. (1)当时,求在最小值; (2)若存在单调递减区间,求的取值范围; (3)求证:().
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号