某省对省内养殖场“瘦肉精”使用情况进行检查,在全省的养殖场随机抽取M个养殖场的猪作为样本,得到M个养殖场“瘦肉精”检测阳性猪的头数,根据此数据作出了频率分布表和频率分布直方图如下:
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
n |
![]() |
m |
P |
![]() |
2 |
0.05 |
合计 |
M |
1 |
(1)求出表中M,P以及图中a的值.
(2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间内的养殖场的个数.
(3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间内的概率.
如图,设椭圆:
的离心率
,顶点
的距离为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.
如图,在各棱长均为的三棱柱
中,侧面
底面
,
.
(1)求侧棱与平面
所成的角;
(2)已知点满足
,在直线
上的点
,满足
,求二面角
的余弦值.
如图,是正方形
所在平面外一点,且
,
,若
、
分别是
、
的中点.
(1)求证:;
(2)求点到平面
的距离.
已知以点为圆心的圆经过点
和
,线段
的垂直平分线交圆于点
和
,且
.
(1)求直线的方程;
(2)求圆的方程.
如图,在四棱锥中,底面为直角梯形,
,
,
底面
,且
,
、
分别为
、
的中点.
(1)求证:平面
;
(2)求证:.