游客
题文

已知在四棱锥P-ABCD中,AD//BC, PA=PD=AD=2BC=2CD,E,F分别为AD,PC的中点.

(Ⅰ)求证平面PBE;  
(Ⅱ)求证PA//平面BEF;
(Ⅲ)若PB=AD,求二面角F-BE-C的大小.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

已知函数
(Ⅰ)若无极值点,但其导函数有零点,求的值;
(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

已知的图像在点处的切线与直线平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围.

已知函数.
(1)当时,求的最小值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)当时,不等式恒成立,求实数的取值范围.

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号