为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟的跳绳次数测试,将取得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5.
(1)求第四小组的频率;
(2)参加这次测试的学生有多少人;
(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率约为多少.
设0≤x≤2,求函数y=的最大值和最小值.
沪杭高速公路全长千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于
千米/时且不高于
千米/时的时速匀速行驶到杭州.已知该汽车每小时的运输成本
(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米/时)的平方成正比,比例系数为
;固定部分为200元.
(1)把全程运输成本(元)表示为速度
(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
设的定义域是
,且
对任意不为零的实数x都满足
=
.已知当x>0时
(1)求当x<0时,的解析式(2)解不等式
.
定义在R上的函数,对任意的
,有
,且
.
(1) 求证:;(2)求证:
是偶函数.
已知函数是奇函数,且
.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在上的单调性,并加以证明.