某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
(1)完成此统计表;
|
同意 |
不同意 |
合计 |
教师 |
1 |
|
|
女学生 |
|
4 |
|
男学生 |
|
2 |
|
(2)估计高三年级学生“同意”的人数;
(3)从被调查的女学生中选取2人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率.
陈老师购买安居工程集资房7m2,单价为1000/ m2,一次性国家财政补贴28800元,学校补贴14400元,余款由个人负担,房地产开发公司对教师实行分期付款,即各期所付的款以及各期所付的款到最后一次付款时所生的利息合计,应等于个人负担的购房余款的现价以及这个余款现价到最后一次付款时所生利息之和,每期为一年,等额付款,签订购房合同后一年付款一次,再过一年又付款一次等等,若付10次,10年后付清。如果按年利率的7.5%每年复利一次计算(即本年利息计入次年的本金生息),那么每年应付款多少元?(参考数据:1.0759 1.921,1.07510
2.065,1.07511
2.221)
某企业年初有资金1000万元,如果该企业经过生产经营,每年资金增长率为50%,但每年年底都要扣除消费基金x万元,余下资金投入再生产,为实现经过五年,资金达到2000万元(扣除消费基金后),那么每年扣除的消费资金应是多少万元(精确到万元)。
求Sn=(x+)+(x2+
)+…+(xn+
)(y
)。
已知数列{an}满足a1=1,a2=-,从第二项起,{an}是以
为公比的等比数列,{an}的前n项和为Sn,试问:S1,S2,S3…,Sn,…能否构成等比数列?为什么?
已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,(2)q=