现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量
的分布列与数学期望
.
(本小题满分10分)
已知在直角坐标系中,圆
的参数方程为
为参数).
(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆
的极坐标方程;
(2)直线的坐标方程是
,且直线
与圆
交于
两点,试求弦
的长.
(本小题满分10分)
自圆外一点
引圆
的两条割线
和
,如图所示,其中割线
过圆心
,
.
(1)求的大小;
(2)分别求线段和
的长度.
(本小题满分12分)
已知函数,且曲线
在点
处的切线与直线
平行.
(1)求的值;
(2)判断函数的单调性;
(3)求证:当时,
(本小题满分12分)
已知椭圆的离心率为
,以原点
为圆心,椭圆
的长半轴这半径的圆与直线
相切.
(1)求椭圆标准方程;
(2)已知点为动直线
与椭圆
的两个交点,问:在
轴上是否存在点
,使
为定值?若存在,试求出点
的坐标和定值,若不存在,说明理由.
(本小题满分12分)
如图,已知四棱锥中,
平面
,底面
是正方形,
、
分别为
、
的中点.
(1)求证:平面
;
(2)求二面角的余弦值.