(本小题满分10分)
已知在直角坐标系中,圆
的参数方程为
为参数).
(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆
的极坐标方程;
(2)直线的坐标方程是
,且直线
与圆
交于
两点,试求弦
的长.
如图,在四棱锥平面ABCD,
,E为PD的中点,F在AD上且
.
(1)求证:CE//平面PAB;
(2)若PA=2AB=2,求四面体PACE的体积.
已知数列中,
为其前
项和,且对任意
,都有
.
(1)求数列的通项公式;
(2)设数列满足
,求数列
的前
项和
.
已知函数的周期为
.
(1)求的解析式;
(2)在中,角A、B、C的对边分别是
,
,求
的面积.
已知椭圆的离心率
,点A为椭圆上一点,
.
(1)求椭圆C的方程;
(2)设动直线与椭圆C有且只有一个公共点P,且与直线
相交于点Q.问:在
轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.
设.
(1)求函数的图象在点
处的切线方程;
(2)求的单调区间;
(3)当时,求实数
的取值范围,使得
对任意
恒成立.