2014年“五一节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:
(1)求a的值,并说明交警部门采用的是什么抽样方法?
(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(3)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.
甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 ,乙每次投篮的命中率均为 .由抽签确定第 次投篮的人选,第 次投篮的人是甲、乙的概率各为 .
(1)求第 次投篮的人是乙的概率;
(2)求第 次投篮的人是甲的概率;
(3)已知:若随机变量 服从两点分布,且 , 则 .记前 次(即从第 次到第 次投篮)中甲投篮的次数为 ,求 .
设等差数列 的公差为 ,且 .令 ,记 , 分别为数列 , 的前 项和.
(1)若 , ,求 的通项公式;
(2)若 为等差数列,且 ,求 .
已知函数 .
(1)讨论 的单调性;
(2)证明:当 时, .
如图,在正四棱柱 中, , .点 , , , 分别在棱 , , , 上, , , .
(1)证明: ;
(2)点 在棱 上,当二面角 为 时,求 .
已知在 中, , .
(1)求 ;
(2)设 ,求 边上的高.