已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[
,
]上的最大值.
已知动点的轨迹是曲线
,满足点
到点
的距离与它到直线
的距离
之比为常数,又点
在曲线
上.
(1)求曲线的方程;
(2)已知直线与曲线
交于不同的两点
和
,求实数
的取值范围.
如图,四棱锥中,
,底面
为直角梯形,
,点
在棱
上,且
.
(1)求异面直线与
所成的角;
(2)求证:平面
;
(3)求二面角的余弦值.
已知曲线的方程是
.
(1)若曲线是椭圆,求
的取值范围;
(2)若曲线是双曲线,且有一条渐近线的倾斜角是
,求此双曲线的方程.
在面积为12的中,已知
,
,试建立适当的坐标系,求出分别以
为左、右焦点且过
的双曲线方程.
已知大西北某荒漠上两点相距2千米,现准备在荒漠上围垦出一片以
为一条对角线的平行四边形区域建农艺园.按照规划,围墙总长为8千米.
(1)试求四边形另两个顶点的轨迹方程;
(2)该荒漠上有一条直线型小溪刚好通过点
,且
与
成
角.现要对整条小溪进行改造,因考虑到小溪可能被农艺园围进的部分今后重新设计改造,因此对该部分暂不改造.问暂不改造的部分有多长?