已知动点的轨迹是曲线
,满足点
到点
的距离与它到直线
的距离
之比为常数,又点
在曲线
上.
(1)求曲线的方程;
(2)已知直线与曲线
交于不同的两点
和
,求实数
的取值范围.
在中,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
(本小题满分14分)
已知函数在点
处的切线为
.
(1)求实数,
的值;
(2)是否存在实数,当
时,函数
的最小值为
,若存在,求出
的取值范围;若不存在,说明理由;
(3)若,求证:
.
(本小题满分14分)
已知椭圆的离心率为
,且经过点
.圆
.
(1)求椭圆的方程;
(2)若直线与椭圆C有且只有一个公共点
,且
与圆
相交于
两点,问
是否成立?请说明理由.
(本小题满分14分)
已知首项为,公比不等于
的等比数列
的前
项和为
,且
,
,
成等差数列.
(1)求数列的通项公式;
(2)令,数列
的前
项和为
,求证:
.
(本小题满分14分)
如图,在多面体中,
平面
,
∥
,平面
平面
,
,
,
.
(1)求证:∥
;
(2)求三棱锥的体积.