游客
题文

某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20 m,拱顶距水面6 m,桥墩高出水面4 m,现有一货船欲过此孔,该货船水下宽度不超过18 m,目前吃水线上部分中央船体高5 m,宽16 m,且该货船在现在状况下还可多装1000 t货物,但每多装150 t货物,船体吃水线就要上升0.04 m,若不考虑水下深度,该货船在现在状况下能否直接或设法通过该桥孔?为什么?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数,其中
(Ⅰ)若,试判断函数的单调性,并说明理由;
(Ⅱ)设函数,若对任意的,总存在唯一的实数,使得成立,试确定实数的取值范围.

若数列满足:对于,都有为常数),则称数列是公差为的“隔项等差”数列.
(Ⅰ)若是公差为8的“隔项等差”数列,求的前项之和;
(Ⅱ)设数列满足:,对于,都有
①求证:数列为“隔项等差”数列,并求其通项公式;
②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.

已知圆,点是直线上的一动点,过点作圆M的切线,切点为
(Ⅰ)当切线PA的长度为时,求点的坐标;
(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(Ⅲ)求线段长度的最小值.

某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一条直线交,从而得到五边形的市民健身广场.

(Ⅰ)假设,试将五边形的面积表示为的函数,并注明函数的定义域;
(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.

,函数
(Ⅰ)已知的导函数,且为奇函数,求的值;
(Ⅱ)若函数处取得极小值,求函数的单调递增区间。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号