△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF
(1)如图,当D点在BC上时,试探索BE与CF的关系,并证明。
(2)如图,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明;如果不成立,请写出相应的正确的结论并加以证明。
水蜜桃是人们非常喜爱的水果之一,每年七、八月份我市水蜜桃大量上市,今年某水果商以16.5元/千克的价格购进一批水蜜桃进行销售,运输过程中质量损耗5%,运输费用是0.6元/千克,假设不计其他费用.
(1)水果商要把水蜜桃售价至少定为多少才不会亏本?
(2)在销售过程中,根据市场调查与预测,水果商发现每天水蜜桃的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润是640元?
如图,点A的坐标为(0,-4),点B为x轴上一动点,以线段AB为边作正方形ABCD(按逆时针方向标记),正方形ABCD随着点B的运动而相应变动.点E为y轴的正半轴与正方形ABCD某一边的交点,设点B的坐标为(t,0),线段OE的长度为m.
(1)当t=3时,求点C的坐标;
(2)当t>0时,求m与t之间的函数关系式;
(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)在△ABC内放入正方形纸片DEFG,使边EF在斜边AB上,点D、G分别在AC、BC上。则正方形的边长为;
(2)类似第(1)小题,使正方形纸片一条边都在AB上,若在△ABC内并排(不重叠)放入两个小正方形,且只能放入两个,试确定小正方形边长的范围;
(3)在△ABC内并排放入(不重叠)边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放个小正方形纸片.
.如图,在矩形ABCD中,AB=6cm,BC=3cm。点P从点A开始,沿边AB-BC-CD-DA以2cm/s的速度移动,点Q从点D开始沿边DA-AB-BC-CD以1cm/s的速度移动。P、Q同时出发,用t(s)表示移动的时间.
(1)当0≤t≤3,t为何值时,△QAP的面积等于2cm2?
(2)当t>3时,若点P、Q按此速度继续移动,当其中一点回到出发点时停止运动,问t为何值时, △QAP的面积等于2cm2.
如图,在下列n×n的正方形网格中,请按图形的规律,探索以下问题:
(1)第④个图形中阴影部分小正方形的个数为;
(2)是否存在阴影部分小正方形的个数是整个图形中小正方形个数的?如果存在,是第几个图形;如果不存在,请说明理由.