(本小题满分12分)对于二次函数y=x²-3x+2和一次函数y=-2x+4,把y=t(x²-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线y=t(x²-3x+2)+(1-t)(-2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】
二次函数是二次函数y=x²-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由
如图,已知二次函数的图象经过A(
,
),B(0,7)两点.
⑴求该抛物线的解析式及对称轴;
⑵当为何值时,
?
⑶在轴上方作平行于
轴的直线
,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作
轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
如图,Rt△ABO的顶点A是双曲线与直线
在第二象限的交点,AB⊥
轴于B且S△ABO=
.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。
某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,为了使5月份的营业额达到633.6万元,那么3月份到5月份的平均增长率为多少?
在直角坐标平面内,二次函数图象的顶点为,且过点
.
(1)求该二次函数的解析式;
(2)若点C(-3,12)是抛物线上的另一点,求点C关于对称轴为对称的对称点D的坐标。
某自来水公司为了鼓励市民节约用水,采取分段收费标准,若某用户居民每月应交水费y(元)是用户量x(方)的函数,其图象如图所示,根据图象回答下列问题:(10分)
(1)分别求出x≤5和x>5时,y与x的函数关系式;
(2)自来水公司的收费标准是什么?
(3)若某户居民交水费9元,该月用水多少方