(本小题满分12分)某学校900名学生在一次百米测试中,成绩全部介于秒与
秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组
,第二组
, ,第五组
,下图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级900名学生中,成绩属于第三组的人数;
(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽2个同学组成一个实验组,设其中男同学的数量为,求
的分布列和期望.
在如图所示的几何体中,是边长为2的正三角形,
平面ABC,平面
平面ABC,BD=CD,且
.
(1)若AE=2,求证:AC∥平面BDE;
(2)若二面角A—DE—B为60°.求AE的长。
PM2. 5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;
(2)从这15天的数据中任取三天数据,记表示抽到PM2.5监测数据超标的天数,求
的分布列;
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级。
已知函数.
(1)求函数的最小值和最小正周期;
(2)设△的内角
的对边分别为
且
,
,若
,求
的值。
已知函数(
,
),
.
(1)求函数的单调区间,并确定其零点个数;
(2)若在其定义域内单调递增,求
的取值范围;
(3)证明不等式 (
).
如图,点是椭圆
(
)的左焦点,点
,
分别是椭圆的左顶点和上顶点,椭圆的离心率为
,点
在
轴上,且
,过点
作斜率为
的直线
与由三点
,
,
确定的圆
相交于
,
两点,满足
.
(1)若的面积为
,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.