本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=,
,且
,
(Ⅰ)求实数a,b,c,d的值;
(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,
求|PA|+|PB|.
(3)已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
(本小题满分12分)如图,在四棱锥中,
平面
,
,四边形
,
且
,点
为
中点.
求证:平面
平面
;
求点
到平面
的距离.
(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.已知
、
、
三个年龄段的上网购物者人数成等差数列,求
,
的值;
该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.
(本小题满分12分)在中,
,
.
求角
的值;
设
,求
.
(本小题满分10分)选修4-5:不等式选讲
设函数,
.
当
时,求不等式
的解集;
对任意
恒有
,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
求曲线
的普通方程与曲线
的直角坐标方程;
试判断曲线
与
是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.