本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=,
,且
,
(Ⅰ)求实数a,b,c,d的值;
(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,
求|PA|+|PB|.
(3)已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
(本小题满分16分)已知为实数,函数
,函数
.
(1)当时,令
,求函数
的极值;
(2)当时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立,若存在,求出实数
的取值集合;若不存在,请说明理由.
(本小题满分16分)已知数列(
,
)满足
,
其中
,
.
(1)当时,求
关于
的表达式,并求
的取值范围;
(2)设集合.
①若,
,求证:
;
②是否存在实数,
,使
,
,
都属于
?若存在,请求出实数
,
;若不存在,请说明理由.
(本小题满分16分)
在平面直角坐标系中,已知椭圆
:
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆的标准方程;
(2)已知点,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.
(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为
(m2).
(1)求关于
的函数关系式;
(2)求的最大值.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,
⊥
,
⊥
,
,
分别是
,
的中点,连结
.求证:
(1)∥平面
;
(2)⊥平面
.