游客
题文

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=,且
(Ⅰ)求实数a,b,c,d的值;
(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为
求|PA|+|PB|.
(3)已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.

如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.

(1)求证:EF∥平面ABC1D1
(2)求证:EF⊥B1C.
(3)求三棱锥B1-EFC的体积.

递增等比数列{an}满足a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若,求数列{bn}的前n项和.

从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.由于一些数据丢失,试利用频率分布直方图求:

(1)这50名学生成绩的众数与中位数.
(2)这50名学生的平均成绩.

在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y.
(1)求函数y=f(x)的解析式和定义域;
(2)求y的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号