(本小题满分12分) 已知数列为公差不为零的等差数列,
,各项均为正数的等比数列
的第1项、第3项、第5项分别是
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)求数列的前
项和.
已知中心在坐标原点
的椭圆
经过点
,且点
为其右焦点。
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在平行于 的直线 ,使得直线 与椭圆 有公共点,且直线 与 的距离等于4?若存在,求出直线 的方程;若不存在,说明理由。
设
是不等式
的解集,整数
。
(Ⅰ)记"使得
成立的有序数组
"为事件
,试列举
包含的基本事件;
(Ⅱ)设
,求
的分布列及其数学期望
。
已知△ABC的三边长为有理数
(1)求证cosA是有理数;(2)对任意正整数n,求证cosnA也是有理数
某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率
不等式证明选讲
已知实数a,b≥0,求证: