已知函数(
为常数).
(1)若是函数
的一个极值点,求
的值;
(2)当时,试判断
的单调性;
(3)若对任意的任意的
,不等式
恒成立,求实数
的取值范围.
(本小题满分12分)
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时。
(Ⅰ)求出甲、乙两人所付租车费用相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求
的分布列与数学期望
;
.
如图甲,直角梯形中,
,
,点
、
分别在
,
上,且
,
,
,
,现将梯形
沿
折起,使平面
与平面
垂直(如图乙).
(Ⅰ)求证:平面
;
(Ⅱ)当的长为何值时,二面角
的大小为
?
已知等差数列的前
项和为
,且
(1)求通项公式;
(2)求数列的前
项和
如图,某观测站C在城A的南偏西的方向,从城A出发有一条走向为南偏东
的公路,在C处观测到距离C处31km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20km后到达D处,测得C,D两处的距离为21km,这时此车距离A城多少千米?
设函数.
(I)求函数的最小值;
(Ⅱ)若,且
,求证:
;
(Ⅲ)若,且
,
求证:.