已知函数(
为常数).
(1)若是函数
的一个极值点,求
的值;
(2)当时,试判断
的单调性;
(3)若对任意的任意的
,不等式
恒成立,求实数
的取值范围.
设集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},求实数a的值.
已知M={1,2,a2-3a-1 },N={-1,a,3},M∩N={3},求实数a的值.
设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求, (CUA)
(CUB),
。
设集合,
,若
,求实数
的取值范围.
在平面直角坐标系中,O为坐标原点,已知点,
,若点C满足
,点C的轨迹与抛物线
交于A、B两点.
(I)求证:;
(II)在轴正半轴上是否存在一定点
,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.