游客
题文

已知椭圆过点,其焦距为
(1)求椭圆的方程;
(2)已知椭圆具有如下性质:若椭圆的方程为,则椭圆在其上一点处的切线方程为,试运用该性质解决以下问题:
(i)如图(1),点在第一象限中的任意一点,过的切线分别与轴和轴的正半轴交于两点,求面积的最小值;
(ii)如图(2),过椭圆上任意一点的两条切线,切点分别为.当点在椭圆上运动时,是否存在定圆恒与直线相切?若存在,求出圆的方程;若不存在,请说明理由.

图(1)                               图(2)

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

右图为一简单组合体,其底面ABCD为正方形,平面
,且="2" .
(1)求四棱锥B-CEPD的体积;
(2)求证:平面

已知复数,,且
(1)若,求的值;
(2)设,求的最小正周期和单调减区间.

(本小题满分14分)
下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知


























(1)求的值;
(2)求用表示的代数式;
(3)设表中对角线上的数,,,……,组成一列数列,设Tn=+++……+求使不等式成立的最小正整数n.

(本小题满分14分)已知函数()
(1) 判断函数的单调性;
(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.

(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.
(1) 当t变化时,求点P的轨迹方程;
(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,
求直线BC的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号