已知椭圆过点
,其焦距为
.
(1)求椭圆的方程;
(2)已知椭圆具有如下性质:若椭圆的方程为,则椭圆在其上一点
处的切线方程为
,试运用该性质解决以下问题:
(i)如图(1),点为
在第一象限中的任意一点,过
作
的切线
,
分别与
轴和
轴的正半轴交于
两点,求
面积的最小值;
(ii)如图(2),过椭圆上任意一点
作
的两条切线
和
,切点分别为
.当点
在椭圆
上运动时,是否存在定圆恒与直线
相切?若存在,求出圆的方程;若不存在,请说明理由.
图(1) 图(2)
)已知数列是等差数列,其前n项和为
,
,
(I)求数列的通项公式;
(II)设p、q是正整数,且p≠q. 证明:.
)已知二次函数f(x)=
(1)若f(0)>0,求实数p的取值范围
(2)在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围。
直线经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,求直线
的方程。
已知函数f(x)=,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求实数a的取值范围.
坐标系与参数方程在直角坐标系中,直线
的参数方程为
(t 为参数)。在极坐标系(与直角坐标系
取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
。
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,
),求|PA|+|PB|.